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Abstract

In our previous work, we introduced CosyVoice, a multilingual speech synthesis
model based on supervised discrete speech tokens. By employing progressive se-
mantic decoding with two popular generative models, language models (LMs) and
Flow Matching, CosyVoice demonstrated high prosody naturalness, content con-
sistency, and speaker similarity in speech in-context learning. Recently, significant
progress has been made in multi-modal large language models (LLMs), where the
response latency and real-time factor of speech synthesis play a crucial role in the
interactive experience. Therefore, in this report, we present an improved stream-
ing speech synthesis model, CosyVoice 2, which incorporates comprehensive and
systematic optimizations. Specifically, we introduce finite-scalar quantization to
improve the codebook utilization of speech tokens. For the text-speech LM, we
streamline the model architecture to allow direct use of a pre-trained LLM as the
backbone. In addition, we develop a chunk-aware causal flow matching model to
support various synthesis scenarios, enabling both streaming and non-streaming
synthesis within a single model. By training on a large-scale multilingual dataset,
CosyVoice 2 achieves human-parity naturalness, minimal response latency, and
virtually lossless synthesis quality in the streaming mode. We invite readers to
listen to the demos at https://funaudiollm.github.io/cosyvoice2.

1 Introduction

In recent years, neural text-to-speech (TTS) synthesis models have garnered significant attention
for surpassing traditional concatenative and statistical parametric methods [1–7]. These models
have achieved high fidelity and naturalness on pre-defined specific speakers. Recent studies show
that zero-shot TTS models are able to synthesize speech for any speaker by imitating the timbre,
prosody and style of a reference speech [8]. Beyond their in-context learning (ICL) capability, zero-
shot TTS models benefit from large-scale training data, achieving synthesis quality and naturalness
nearly indistinguishable from human speech.

Recent zero-shot TTS models can be broadly divided into three categories: codec language models,
feature diffusion models and their hybrid systems. Codec language models utilize a speech codec
model to extract discrete speech representation [9–11] and employ an autoregressive [8, 12–17] or
masked [18] language model to predict the speech tokens, which are then synthesized to waveforms
via codec vocoders [19,20]. Continuous speech representations are also explored in [21]. Language
model-based TTS can generate varied and prosody-consistent speech via autoregressive sampling.

∗The code and pre-trained models are released at: https://github.com/FunAudioLLM/CosyVoice
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Inspired by advances in image generation, denoising diffusion [22, 23] and flow matching mod-
els [24] have been introduced into non-autoregressive (NAR) speech synthesis. Early diffusion-
based TTS models required duration prediction for each text (phone) to address the length disparity
between text and speech features [25–28]. However, this rigid alignment can affect naturalness, re-
sulting in flat prosody. To mitigate this issue, cross-attention and Diffusion Transformers (DiT) have
been introduced into NAR TTS models [29, 30]. Recent research indicates simpler approaches for
text-speech alignment in NAR TTS models, such as E2 TTS [31], F5-TTS [32] and Seed-TTS [33].
In these models, input text is padded with special tokens to match the total speech length which is
either automatically predicted by the utterance duration prediction module or specified by the user in
advance. Since NAR TTS models are not constrained by codec vocoders, they can achieve superior
speech quality.

Hybrid systems combine the text-to-codec language model and codec-to-feature diffusion model
[33–35]. The language model addresses the alignment between text and speech as well as the ut-
terance duration prediction, while the codec-to-feature diffusion model synthesizes speech features
(Mel spectrum) based on the generated codec and other conditions. By leveraging the strengths
of both generative models, hybrid systems achieve high diversity, prosody consistency and speech
quality.

Despite the success of recent zero-shot TTS models, they generally operate in non-streaming (of-
fline) mode, which involves complete input text and requires synthesizing the entire utterance before
returning the waveform. This results in high latency, negatively impacting user experience in ap-
plications like voice chat [36, 37]. To address this issue, streaming synthesis has been explored for
language model-based zero-shot TTS models [38–41], but diffusion-based TTS models and hybrid
systems lack well-established streaming solutions.

Building on the success of CosyVoice [34], we introduce CosyVoice 2, a streaming zero-shot TTS
model with improved prosody naturalness, content consistency, and speaker similarity. Our contri-
butions include:

• Unifying streaming and non-streaming synthesis in a single framework and proposing the unified
text-speech language model and chunk-aware causal flow matching model, leading to lossless
streaming synthesis compared to offline mode.

• Simplifying the LM architecture by removing the text encoder and speaker embedding, allowing
pre-trained textual large language models (LLMs) to serve as the backbone, enhancing context
understanding.

• Replacing vector quantization (VQ) in the speech tokenizer with finite scalar quantization (FSQ),
improving codebook utilization and capturing more speech information.

• Upgrading the instructed TTS capacity to support more instructions, including emotion, accent,
role style, and fine-grained control. In CosyVoice 2, the instruction and zero-shot capacity are
integrated into a single model, enabling more versatile and vivid synthesis.

Through the above systemic modification and optimization, CosyVoice 2 achieves human-parity
synthesis quality and is nearly lossless in streaming mode. The unified framework loosens deploy-
ment requirements, enabling a single model to support both streaming and non-streaming synthesis.
The upgraded instructed TTS capacity provides a more powerful and easier approach for users to
generate various speeches. In addition, the chunk-aware flow matching design can also be applied
to NAR TTS models, which suggests the potential for streaming NAR models.

2 CosyVoice 2

CosyVoice 2 builds on the similar design philosophy of its predecessor [34] by separating the seman-
tic and acoustic information of speech signals and modeling them independently. The speech gener-
ation process is redefined as a gradual semantic decoding procedure, where conditional information
is progressively incorporated. Specifically, the text-speech language model (LM) focuses solely on
semantic information, decoding high-level text tokens into supervised semantic speech tokens. In
the Flow Matching model, acoustic details, such as timbre, are introduced through speaker embed-
dings and reference speech, converting speech tokens into the Mel spectrum for a given speaker.
Finally, a pre-trained vocoder model reinstates the phases, transforming the Mel spectrum back into
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Figure 1: An overview of CosyVoice 2. (a) demonstrates the supervised speech tokenizer, where
dashed modules are only used at the training stage. (b) is a unified text-speech language model for
streaming and non-streaming synthesis. Dashed lines indicate the autoregressive decoding at the
inference stage. (c) illustrates the causal flow matching model conditioning on a speaker embedding
v, semantic tokens µ, masked speech features X̃ and intermediate state Xt at timestep t on the
probabilistic density path.

the original audio signal. The following sections will introduce the details of CosyVoice 2 and
the modifications for streaming synthesis from five respects: text tokenizer, supervised semantic
speech tokenizer, unified text-speech LM for streaming/non-streaming synthesis and chunk-aware
Flow Matching model. Figure 1 provides an overview of CosyVoice 2.

2.1 Text Tokenizer

CosyVoice 2 uses the raw text as input directly, which is tokenized using a BPE-based text tokenizer.
This eliminates the need for a frontend model that obtains phonemes via the grapheme-to-phoneme
(g2p) transformation. This approach not only simplifies the data preprocessing workflow but also
enables the model to learn the pronunciations of words within various contexts in an end-to-end
manner. Unlike the tokenizers commonly used in textual LLMs, CosyVoice 2 masks out the one-
to-many tokens. This prevents the pronunciation of a token from becoming excessively long and
reduces corner cases caused by data sparsity. Specifically, if a BPE token encodes more than one
Chinese character, it will be masked out, and each character will be encoded separately during the
tokenization process. Other languages, such as English, Japanese, and Korean, are not subject to
special handling.

2.2 Supervised Semantic Speech Tokenizer

As shown in Figure 1 (a), we insert the finite scalar quantization (FSQ) module [42] into the encoder
of SenseVoice-Large ASR model [43]. At the training stage, the input speech X goes through the
Encoder1 to obtain the intermediate representations, where Encoder1 consists of six Transformer
blocks with the rotary positional embedding [44]. Then, the intermediate representations are fed
into the FSQ module for quantization, and the quantized representations are passed through the
rest of SenseVoice-Large modules, including Encoder2 and ASR Decoder, to predict the posterior
probabilities of corresponding text tokens.

In the FSQ module, the intermediate representations H are firstly projected into a D-dimensional
low-rank space, and the values of each dimension are quantized into [−K,K] with the bounded
round operation ROUND. Then, the quantized low-rank representations H̄ are projected into the
original dimension H̃ for the following modules:

H̄ = ROUND(Projdown(H))

Ĥ = Projup(H̄)
(1)

At the training stage, the straight-through estimation is used to approximate the gradients of FSQ
module and Encoder1. The speech token µi can be obtained by calculating the index of quantized
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low-rank representation h̄i in the (2K + 1)-ary system:

µi =

D−1∑
j=0

h̄i,j(2K + 1)j (2)

The Encoder1, low-rank projector of FSQ module, bounded round operation and index calculation
form the speech tokenizer for CosyVoice 2. Our speech tokenizer works at a token rate of 25 Hz,
i.e., 25 speech tokens per second.

Unified Streaming & Non-streaming LM

EStreaming Mode

S T E

Unified Streaming & Non-streaming LM

ENon-Streaming Mode

S T E

Text Token
Speech Token
Filling Token
Ignore Token

Figure 2: A diagram of the unified text-speech language model for streaming and non-streaming
synthesis in CosyVoice 2.

2.3 Unified Text-Speech Language Model

In CosyVoice 2, the pre-trained textual LLM, Qwen2.5-0.5B [45], is used as the text-speech lan-
guage model to generate the speech tokens autoregressively with the input text as a prompt. Similar
to other LMs, the text-speech LM is also trained in a next-token-prediction scheme as shown in
Figure 1 (b). Different from the previous CosyVoice, we remove the speaker embedding to avoid
information leaking. More importantly, we find that such utterance-level vector contains not only
speaker identify but also language and paralanguage information, which harms the prosody natural-
ness and cross-lingual capability of the text-speech LM. Besides, we also abandon the text encoder
of the previous CosyVoice, since we find that the Qwen2.5-0.5B model is powerful enough to align
the text and speech tokens, and the text encoder is no longer needed.

Benefiting from the simplicity of text-speech LM, we can build a unified model for both streaming
and non-streaming synthesis. Here, “streaming mode” means the input text is received in a continu-
ous flow rather than being known as a complete sentence in advance. In CosyVoice 2, the difference
between streaming and non-streaming modes is only the way of sequence construction for LM:

• For the Non-Streaming mode, the “start of sequence” S , all text tokens, “turn of speech” token
T , all speech tokens and the “end of sequence” E are concatenated sequentially as shown in
the bottom of Figure 2. Ignore token means that their losses are ignored while minimizing the
cross-entropy objective function.

• For the Streaming mode, we mix up the text and speech tokens in a pre-defined ratio of N :M ,
i.e. every N text tokens are followed by M speech tokens seen in the top of Figure 2. If the next
token is a text token, the model is expected to predict a filling token (rather than the text token),
which indicates that the next N text tokens should be concatenated at the inference stage. Once
the text tokens are ran out of, the “turn of speech” token T and the remaining speech tokens are
concatenated sequentially, forming the hybrid text-speech token sequence in the streaming mode.

By training the text-speech LM on the above two sequences simultaneously, we can perform stream-
ing and non-streaming speech generation within a single unified model. In real-life scenarios, such
as speaker fine-tuning (SFT) and in-context learning (ICL), the inference sequence differs as follows:

• ICL, Non-Streaming: In ICL, the LM requires prompt text and speech tokens from the ref-
erence audio to imitate the accent, prosody, emotion and style. In the non-streaming mode,
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Figure 3: A diagram of the unified chunk-aware flow matching model for streaming and non-
streaming synthesis in CosyVoice 2.

the prompt and to-synthesize text tokens are concatenated as the whole entity, and the prompt
speech tokens are treated as the pre-generated results and are fixed: “ S , prompt text, text, T ,
prompt speech”. The autoregressive generation of LM is started from such sequence until the
“End of sequence” token E is detected.

• ICL, Streaming: In this scenario, we assume the to-generate text is already known and the speech
tokens should be generated in a streaming manner. Similarly, we treat the prompt and to-generate
text as a whole entity. Then, we mix it up with the prompt speech tokens on the ratio of N :M :
“ S , mixed text speech, T , remaining speech”. If the length of text is greater than that of
prompt speech tokens, the LM will generate “filling token”. In this situation, we manually pad
N text tokens. If the text tokens run out of, the “Turn of speech” token T will be added. In the
streaming mode, we return generation results every M tokens until the E is detected.

• SFT, Non-Streaming: In the SFT scenario, the LM is fine-tuned on a specific speaker, and the
prompt text and speech are no longer needed. Thus, the initial sequence is very simple: “ S , text,
T ”. Starting from this, the text-speech LM can generate speech tokens autoregressively until T .

• SFT, Streaming: In the streaming mode of SFT, we start the speech generation from the following
sequence: “ S , first N text”. Then, the LM will generateM speech tokens, and we manually pad
the next N text tokens. We repeat the above process until all text tokens run out of, and then
T is added. Note that this mode can also be adopted by the speech-to-speech multi-modal large
language models to obtain an extremely low latency.

2.4 Chunk-aware Flow Matching

In CosyVoice 2, we employ the Mel spectrogram as the acoustic feature with the frame rate of
50 Hz and the sampling rate of 24000. Due the frame-rate mismatch between speech tokens and
Mel features, we up-sample the speech tokens with the ratio of two to match the frame rate of
Mel spectrogram. Before the up-sampling operation, we add an additional look-ahead convolution
layer to provide the future information for the following causal modules. The look-ahead layer is
implemented by a right-padded 1-D convolution with the pad size of P and the kernel size of P + 1.
After these, several chunk-aware causal Transformer blocks are followed to align the representation
space of speech tokens to match acoustic features.

Subsequently, our goal is to further decode the speech tokens into the Mel spectrogram specified
by the speaker embedding and reference speech. To achieve this, we employ a conditional flow
matching (CFM) model to sample the Mel spectrogram, given speech tokens, reference speech and
speaker embedding as conditions. In the CFM model, the distribution of target Mel spectrogram
is described by a probability density path from a prior distribution p0(X) and the data distribution
q(X). The probability density path can be defined by a time-dependent vector field. For sampling
efficiency, we employ the optimal-transport (OT) flow to match the vector field ωt, which is given
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by an ordinary differential equation (ODE):

ωt(φ
OT
t (X0, X1)|X1) = X1 −X0 (3)

φOTt (X0, X1) = (1− t)X0 + tX1 (4)
X0 ∼ p0(X) = N (0, I) (5)
X1 ∼ q(X) (6)

A causal convolutional Transformer UNet is employed to learn the above ODE with the up-sampled
token µ, masked Mel spectrogram X̃1, speaker embedding2 v and timestep t as the conditions:

νt(φ
OT
t (X0, X1)|θ) = UNetθ

(
φOTt (X0, X1), t;v, {µ}1:L, X̃1

)
(7)

At the training stage, the masked Mel spectrogram is obtained by randomly masking out 70% to
100% of the final frames inX1. As for the inference, it is provided by the Mel spectrogram extracted
from the reference speech. By minimizing the L1 loss between the predicted and ground-truth ODE,
we can optimize the UNet parameters θ as follows:

θ = arg min
θ

Ep0(X),q(X),t

∣∣∣ωt(φOTt (X0, X1))− νt(φOTt (X0, X1)|θ;µ, X̃1,v)
∣∣∣
1

(8)

At the training stage, the timestep follows a uniform distribution U [0, 1]. However, during the
inference, we employ the cosine scheduler to offer more steps for the initial generation stage:

t := 1− cos

(
1

2
tπ

)
(9)

Besides, we also train the model on both conditional and non-conditional situations to enable the
classifier-free guidance (CFG) [46–48] at the inference stage:

ν̃t(φ
OT
t (X0, X1)|θ; Ψ) = (1 + β) · νt(φOTt (X0, X1)|θ; Ψ)− β · νt(φOTt (X0, X1)|θ) (10)

where Ψ denotes the conditions {v, µ, X̃1}. The CFG strength β and the number of flow estimation
(NFE) are set to 0.7 and 10, respectively, according to the experimental results.

The current flow matching models always work on a offline mode, i.e., only all the speech tokens
are generated, the Mel spectragram can be sampled, which is not friendly for the streaming syn-
thesis. To overcome this issue, we treat the multi-step flow estimation as a stacked deeper neural
network, which repeats the UNet ten times. Thus, by making the unfolded neural network causal,
we can apply it on the streaming synthesis. We construct four masks to satisfy different application
situations:

• Non-causal Mask is used for offline mode, which can achieve the best performance by attending
all frames of conditions. Non-causal mask is suitable for the latency-insensitive situations.

• Full-causal Mask is designed for scenarios required extremely low latency, in which only the
past frames can be attended.

• Chunk-M Mask is a trade off between latency and performance, which can leverage the informa-
tion of the past and M future frames. This mask is more suitable for the first chunk of generation
with low latency.

• Chunk-2M Mask can achieve a approximate performance of offline mode by sacrificing more
latency, which can be used for the cascade generation chunk for better performance.

For each training case in a mini-batch, we randomly sample a mask from the above four masks under
the uniform distribution. In this manner, one flow matching model can be compatible to different
scenarios, lowering the deployment complexity. Another advantage of this chunk-aware training is
that the masks with more context sever as a teacher for the ones with less context, benefiting from
the implicit self-distillation scheme.

2https://github.com/alibaba-damo-academy/3D-Speaker/tree/main/egs/3dspeaker/sv-cam++
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2.5 Latency Analysis for Streaming Mode

The first-package latency is an important metric for streaming synthesis models, which significantly
affects the user experience especially in LLM-based voice chat applications, such as GPT-4o [36].
In the context of TTS, the to-synthesize text is known in advance, and the latency comes from the
aspects of speech token generation, Mel spectrogram reconstruction and waveform synthesis. Thus,
the first-package latency LTTS of CosyVoice 2 can be obtained as follows:

LTTS = M · dlm +M · dfm +M · dvoc (11)
where dlm denotes the computation time of LM to generate one speech token, dfm represents the
computation time of Flow Matching model to generate the frames of Mel spectrogram for one speech
token and dvoc stands for the computation time of vocoder to synthesize waveforms corresponding
to one speech token. In the context of LLM-based voice chat, the length of first-package-required
text should also be considered, and the first-package latency LChat becomes as follows:

LChat ≤ N · dllm + LTTS (12)
where dllm represents the computation time of a LLM to generate one text token. Note that, since
the multi-character tokens are masked out in CosyVoice 2’s text tokenizer, the text tokens used by
text LLMs always encode longer raw text than those of CosyVoice 2. Thus, the the first-package
latency LChat must be lower than the summation of N · dllm and LTTS .

2.6 Instructed Generation

To enhance the controllability of CosyVoice 2, we integrated the instructed dataset into the base
training set. We have collected 1500 hours of instructed training data, which includes both natural
language instructions and fine-grained instructions, as outlined in Table 1. For natural language in-
structions, we prepend a natural language description and a special end token, “<|endofprompt|>”
before the to-synthesize input text. These descriptions cover aspects such as emotion, speaking rate,
role-playing, and dialects. For fine-grained instructions, we insert vocal bursts between text tokens,
using markers like “[laughter]” and “[breath]”. Additionally, we apply vocal feature tags
to phrases; for instance, “<strong>XXX</strong>” indicates emphasis on certain words, while
“<laughter>XXX</laughter>” signifies speaking with laughter.

Natural Language Instruction

Emotion: 高兴(Happy),悲伤(Sad),惊讶(Surprised),愤怒(Angry),恐惧(Fearful),厌恶(Disgusted),冷
静(Calm),严肃(Serious)
Speaking Rate: 快速(Fast),非常快速(Very Fast),慢速(Slow),非常慢速(Very Slow)
Dialect: 粤语,四川话,上海话,郑州话,长沙话,天津话
Role-playing: 神秘(Mysterious),凶猛(Fierce),好奇(Curious),优雅(Elegant),孤独(Lonely),机器
人(Robot),小猪佩奇(Peppa), etc.

Fine-grained Instruction

Vocal Bursts: [laughter], [breath], etc.
Vocal Features: <laughter></laughter>, <strong></strong>

Examples

-你能用高兴的情感说吗？< |endofprompt| >今天真是太开心了，马上要放假了！I’m so happy,
Spring Festival is coming!
- Please speaking very fast.< |endofprompt| >Today is a happy day, full of laughter and joy.
-请问你能模仿粤语的口音吗？< |endofprompt| >多保重，早休息。
-尝试一下以机器人的角色和我交流。< |endofprompt| >接收知识光波！
- [laughter]有时候，看着小孩子们的天真行为[laughter]，我们总会会心一笑。
- She pursued her dreams with <strong>enthusiasm</strong> and <strong>grit</strong>.

Table 1: Examples of natural language instructions and fine-grained instructions.

2.7 Multi-Speaker Fine-tuning

Fine-tuning the pre-trained model on specific speakers (SFT) can further improve the generation
quality and speaker similarity. In this report, we introduce the multi-speaker fine-tuning (mSFT), in
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which the pretrained model is fine-tuned on multiply speakers simultaneously rather than a sin-
gle speaker. This approach ensures comprehensive prosody and pronunciation coverage across
multiple speakers and mitigates potential catastrophic forgetting from the pretrained models. To
avoid timbre confusion between various speakers, we prepend speaker-prompt tags, “Speaker
A<|endofprompt|>” to the input text for a specific speaker. If a training sample is not labeled
to a speaker, a special tag, “unknown<|endofprompt|>”, is utlized. The learning rate is set to 1e-5
during the whole multi-speaker fine-tuning process.

2.8 Reinforcement Learning for SFT

Reinforcement learning is a commonly used method in the training of large language models, which
can make the LM output align with human preference. In CosyVoice 2, we employ speaker similarity
(SS) and recognition word error rate (WER) from the ASR system as the reward function to improve
speaker similarity and pronunciation accuracy in the fine-tuning stage. We use WER and SS to
distinguish preferred sample xw and rejected samples xl and optimize the TTS system with direct
preference optimization (DPO) [49] as follow:

LDPO(πθ;πref) = − log σ(β log
πθ(µ

w|y)

πref(µw|y)
− β log

πθ(µ
l|y)

πref(µl|y)
) (13)

where µw and µl are the speech token extracted from the preferred and rejected samples xw and xl.

However, this method is time-consuming and computation-consuming as it should synthesis the au-
dios through the TTS system repeatedly to obtain distinguishable preference and rejected samples.
During training, four forward operations are needed for one training step. To simplify the process,
we recover the LM predicted token µi ∈ {0, 1, . . . , (2K + 1)D − 1} into quantized low-rank rep-
resentations H̄ , and directly use the ASR backend of the speech tokenizer to re-predict the input
text. Then the predicted log posterior can be regarded as the ASR reward function to optimize the
text-speech language model. During training, the ASR backend parameters are frozen.

h̄i,j =

⌊
µi

(2K + 1)j

⌋
mod (2K + 1) (14)

Ĥ = Projup(H̄)

LASR = − logP (Y |Ĥ; θASR)
(15)

where Y is the input text, and H̄ are the recovered speech low-rank representations. As the sample
operation of the ui ∼ P (µi|µ1:i−1, Y ; θLM ) still prevent us to optimize the model directly, we use
the gumbel softmax sampling to make it differentiated and then optimize the θLM by the LASR.

3 Experimental Settings

3.1 Training Data for Speech Tokenizer

A 200,000-hour dataset is used to train the speech tokenizer with normalized transcriptions as labels.
Detailed data information is listed in Table 2. The training data comes from three different resources:
open source ASR datasets, internal industrial datasets and TTS generation datasets. Although we
only used Chinese and English data when training the speech tokenizer, as shown in Table 2, sub-
sequent experiments revealed that the speech tokenizer had zero-shot capability for other languages.
It can be also used for speech synthesis in languages such as Japanese and Korean.

Language Duration (hours)
Chinese 110,884
English 99,918

Table 2: Details of training data for speech tokenizer.
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3.2 Training Data for CosyVoice 2

CosyVoice 2 shares the same training data as its previous version [34]. We first collect the speech-
only data with internal speech processing tools, including speech detection, signal-to-noise ratio
(SNR) estimation, speaker diarization, and separation. Subsequently, the Paraformer [50] and Sen-
seVoice [43] are employed to generate pseudo text labels for Chinese and other languages, respec-
tively. We also employ an internal force-alignment model to filter out low-quality data and enhances
the accuracy of punctuation. Data details are provided in Table 3.

Language Duration (hours)
Chinese 130,000
English 30,000
Japanese 4,600
Korean 2,200

Table 3: Details of training data for CosyVoice 2.

3.3 Evaluation Settings

We evaluate our CosyVoice 2 on two test sets. The first one is constructed from the test-clean set
of Librispeech corpus [51], denoting as test-clean. This test set is used to evaluate CosyVoice 2 on
a limited English domain. The Whisper-large V3 is used as the ASR model to evaluate the content
consistency. As for the speaker similarity (SS), we employ the ERes2Net model [52] to extract
speaker embeddings of prompt and generated utterances, and their raw cosine similarity is treated
as the speaker similarity. NMOS score [53] is used to evaluate the objective quality.

The second evaluation is conducted under the SEED settings [33], which is widely used to evaluate
recent TTS models, covering various text domains and reference speeches. In this evaluation, about
2,000 Chinese and 1,000 English samples are selected from CommonVoice datasets, denoting as
test-zh and test-en, respectively. In addition, about 400 hard test cases are also included to evaluate
the robustness of TTS models on text repetition, tongue twister and other challenging synthesis
cases, denoting as test-hard in this report. The Paraformer is employed to recognize the synthesis
results of test-zh and test-hard, while the Whisper-large V3 is adopted for test-en to evaluate the
content consistency.

3.4 Benchmark for Japanese and Korean

We prepare two test sets, denoted as test-ja and test-ko, for the evaluation on Japanese and Korean
speech synthesis. The test-ja consists 1,000 samples extracted from the CommonVoice dataset,
which are used to measure the model’s performance on various metrics, such as WER, SS, MOS.
Specifically, we randomly shuffle and pair the entire CommonVoice JA-test set as reference utterance
and target utterance spoken. Considering the wide range of utterances’ text lengths of JA-test set,
we randomly selected 1,000 pairs of reference-target utterances from the length range from 8 to 32
characters as our final test set. For the test-ko, we selected 1,000 speech samples with a WER of
less than 5% and no deletion or insertion errors, utilizing the Whisper-Large V3 [54] as the ASR
model. These samples were used as reference utterances for the Korean speech synthesis. For the
input text, we randomly selected 1,000 text samples from the remaining data. We have released the
lists of prompt speeches, prompt transcriptions and input text from these two test sets are released to
facilitate result reproduction. By providing this open-source data, we aim to establish a benchmark
for evaluating Japanese and Korean TTS models. The Whisper-large V3 is used as the ASR model
for Japanese and Korean evaluations.

4 Experimental Results

4.1 Evaluations on Speech Tokenizer

An ideal speech tokenizer is supposed to effectively utilizes the codebook, preserves information
at a high fidelity, and demonstrates speaker independence. In this part we evaluate our supervised
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Method Codebook ASR Error Rate (%)
Size Util. C.V. EN C.V. CN Fluers EN Fluers CN

VQ 4,096 963 (23%) 18.26 11.56 7.65 5.03
FSQ 6,561 6,561 (100%) 10.67 7.29 6.58 4.43

Table 4: The comparision of VQ and FSQ inside Sensevoice-large encoder. C.V. stands for the
CommonVoice benchmarks.

speech tokenizer from four aspects: 1) Codebook utilization rate; 2) ASR error rate within the entire
encoder; 3) Token visualization of different speakers; 4) Speaker identification training. Table 4
shows the codebook utilization and ASR error rate. It turns out that the FSQ-based tokenizer fully
utilizes the codebook and maintains more effective information from the aspect of ASR, indicating
more semantic information maintained by FSQ.

We further analyze the characteristics of FSQ through the t-SNE visualization. As an upstream
model for TTS tasks, the tokenizer should strive to minimize the entanglement of speaker identity
information with the speech signal. We selected 100 speech samples from each of the three speakers
in the VoxCeleb1 dataset and visualized the corresponding tokens. As illustrated in Figures 4(a)
and (b), it is evident that before the quantization, Encoder1’s outputs exhibit different distributions
among different speakers. In contrast, the distributions of quantized representations are nearly in-
distinguishable. In addition, Figure 4(c) also shows that the tokenizer fully utilizes the codebook.
Subsequently, the S3prl toolkit [55] is employed to further evaluate the speaker entanglement by
performing speaker identification (SID) task. We use Sensevoice-large encoder with FSQ as an
upstream feature extractor and train SID task with representations before or after the quantization.
Figure 5 shows the accuracy curves during the training. The SID layer with quantized tokens does
not converge, which proves the decoupling function of the tokenizer on speaker information.

Figure 4: The t-SNE visualization of speech representations before (a) and after (b) the quantization
for three different speakers in Voxceb1 dataset. (c) shows the codebook utilization in terms of the
token percentage on the speakers (500 tokens each bin).

4.2 Comparison Results with Baselines

We first evaluated our CosyVoice 2 models on a limited English text domain and compared it with
several open-source models, such as ChatTTS [56], GPT-SoVITs [57], OpenVoice [58], ParlerTTS
[59], EmotiVoice [60], and its predecessor CosyVoice [34]. The objective results are presented
in Table 5, including content consistency (WER), speech quality (NMOS) and speaker similarity
(SS). From the table, we can see that CosyVoice 2 achieves state-of-the-art performance on the
Librispeech test-clean set, surpassing all baseline models acros all evaluation metrics. Notably,
CosyVoice 2 even demonstrates higher content consistency, speech quality, and speaker similarity
than human utterances, indicating its human-parity synthesis quality.

10



Figure 5: The convergence curves of SID training with tokens before or after quantization.

Model WER (%) NMOS SS
Human 2.66 3.84 0.697

ChatTTS [56] 6.84 3.89 -
GPT-SoVITs [57] 5.13 3.93 0.405
OpenVoice [58] 3.47 3.87 0.299
ParlerTTS [59] 3.16 3.86 -
EmotiVoice [60] 3.14 3.93 -

CosyVoice [34] 2.89 3.93 0.743
CosyVoice 2 2.47 3.96 0.745
CosyVoice 2-S 2.45 3.90 0.751

Table 5: Content consistency (WER), speaker similarity (SS) and speech quality (NMOS) results on
LibriSpeech test-clean subset of baselines and CosyVoice 2. Whisper-Large V3 is employed as the
ASR model and punctuations are excluded before WER calculation.

We also evaluated CosyVoice 2 on the commonly-used test sets: SEED test-zh, test-en and test-
hard, which include diverse input texts and reference speeches from various domains. The exper-
imental results for CosyVoice 2 and the baseline models are presented in Table 6. On the test-zh
set, CosyVoice 2 surpasses all open-sourced models in terms of CER and SS, falling short of the
commercial model SEED-TTS by only a small margin. On the test-en set, CosyVoice 2 ranks fourth
and third in terms of WER and SS, respectively. This may result from the imbalance in the vol-
ume of training data between Chinese and English. We plan to explore data scaling in future work
to enhance content consistency in English. On the test-hard set, the offline CosyVoice 2 model

Model test-zh test-en test-hard
CER (%) SS WER (%) SS WER (%) SS

Human 1.26 0.760 2.14 0.730 - -
Vocoder Resyn. 1.27 0.720 2.17 0.700 - -

Seed-TTS† [33] 1.12 0.796 2.25 0.762 7.59 0.776
FireRedTTS [35] 1.51 0.630 3.82 0.460 17.45 0.639
MaskGCT [18] 2.27 0.774 2.62 0.774 10.27 0.748
E2 TTS (32 NFE)† [31] 1.97 0.73 2.19 0.710 - -
F5-TTS (32 NFE) [32] 1.56 0.76 1.83 0.670 8.67 0.762

CosyVoice [34] 3.63 0.775 4.29 0.699 11.75 0.755
CosyVoice 2 1.45 0.806 2.57 0.736 6.83 0.776
CosyVoice 2-S 1.45 0.812 2.38 0.743 8.08 0.785

Table 6: Results of CosyVoice 2 and recent TTS models under the SEED evaluation settings. †
denotes close-sourced models.
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achieves state-of-the-art performance across all compared baseline, demonstrating its robustness in
challenging synthesis scenarios. Compared with human-generated speeches, CosyVoice 2 shows
comparable content consistency and superior speaker similarity. Considering the recognition errors
can also stem from the ASR model, it is reasonable to conclude that CosyVoice 2 achieves a human-
parity synthesis capability. We also evaluated the streaming mode, denoted as “CosyVoice 2-S” in
Table 5 and 6. For both evaluation settings, the streaming mode’s performance is nearly lossless
in typical test cases. Only in challenging cases is there a slight degradation in content consistency,
highlighting the strength of our unified streaming/non-streaming framework.

4.3 Modular Ablation Study

We conducted a modular ablation study on the text-speech language model to assess the impacts of
our modifications, including LLM initialization, removing speaker embedding, and utilizing FSQ.
Table 7 illustrates the step-by-step development of CosyVoice 2 from its predecessor. By replacing
the randomly initialized language model with a pretrained LLM, we achieved relative improvements
in content consistency of 18.46% and 15.40% on the test-zh and test-hard sets, respectively. Next,
we removed the speaker embedding from the text-to-speech language model, which helps prevent
information leakage and disturbances in in-context learning. This change resulted in a significant
reduction in content errors while maintaining speaker similarity, indicating that content information
is primarily modeled by the LM, and speaker information is mainly recovered by the flow matching
model. Finally, by replacing VQ with FSQ, we achieved the CosyVoice 2 model, noting much
higher content consistency and unchanged speaker similarity. By fully utilizing the codebook, FSQ
captures more content information and context variation, leading to better alignment between text
and speech tokens. Furthermore, we conducted a comparative experiment by incorporating pitch loss
as a constraint during the training of the FSQ-based speech tokenizer. We found that this approach
led to improved performance in downstream TTS tasks, as indicated in the last row of Table 7. In
future versions of CosyVoice, we plan to carry out more detailed experiments and analyses.

Model test-zh test-en test-hard
CER (%) SS WER (%) SS WER (%) SS

CosyVoice 3.63 0.775 4.29 0.699 11.75 0.755
+ LLM init. 2.96 0.808 4.57 0.730 9.94 0.789

+ Drop Spk Emb. 2.56 0.804 3.81 0.740 9.66 0.778
+ FSQ (CosyVoice 2) 1.45 0.806 2.57 0.736 6.83 0.776
+ Pitch Loss 1.19 0.802 2.40 0.728 6.29 0.769

Table 7: Modular analysis on the modifications of text-speech language model.

We also conducted another modular analysis to evaluate the impact of streaming modules on the
synthesis performance. Table 8 shows the results for content consistency and speaker similarity. We
fount that the streaming LM has a minimal impact on typical cases from the test-zh and test-en sets,
indicating the effectiveness of our unified training framework. The primary impact of the streaming
LM is observed in challenging cases from the test-hard set, likely due to the loss of contextual
information in streaming mode. Interestingly, the streaming flow matching model results in slightly
higher speaker similarity compared to the offline mode. This may be due to the higher prompt-
to-generation ratio of initial chunks in streaming mode, whereas the prompt-to-generation ratio in
offline mode can be very low, with many padding tokens. The negative effect of the streaming
flow matching model on content consistency is much less pronounced compared to streaming LMs,
thanks to the semantic-acoustic decoupled modeling in CosyVoice 2.

4.4 Results on Japanese and Korean Benchmarks

In addition to Chinese and English, CosyVoice 2 also supports Japanese and Korean. We evalu-
ated the content consistency, speaker similarity and speech quality on our constructed Japanese and
Korean test sets. As shown in Table 9, CosyVoice 2 performs significantly better on Korean than
on Japanese across all evaluation metrics. This discrepancy is primarily due to the overlap in the
character set between Japanese and Chinese, which leads to Chinese pronunciations in Japanese
contexts. In the future work, we plan to explore ways to enhance linguistic context for multilingual
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Model LM FM test-zh test-en test-hard
CER (%) SS WER (%) SS CER (%) SS

M1 Offline Offline 1.45 0.806 2.57 0.736 6.83 0.776
M2 Offline Stream. 1.46 0.811 2.60 0.743 7.12 0.788
M3 Stream. Offline 1.38 0.806 2.51 0.737 7.88 0.773
M4 Stream. Stream. 1.45 0.812 2.38 0.743 8.08 0.785

Table 8: Modular analysis on the impact of streaming modules in CosyVoice 2. Chunk size is set to
15 for streaming modules.

synthesis. Since Korean does not have character overlap with other languages, its speech synthesis
achieves much better performance. Another issue is data imbalance. We believe that increasing the
volume of training data could further improve synthesis performance for both Japanese and Korean.

Model test-ja test-ko
CER (%) SS NMOS CER (%) SS NMOS

CosyVoice 2 18.79 0.630 3.42 7.98 0.707 3.73
CosyVoice 2-S 21.41 0.629 3.35 9.06 0.714 3.60

Table 9: The content consistency (CER), speaker similarity (SS), and speech quality (NMOS) of
CosyVoice 2 and its streaming counterpart on the Japanese test-ja and Korean test-ko test sets.

4.5 Results on Instructed Generation

To evaluate the performance of instructed generation, we have created a Chinese test set comprising
290 samples. This set includes 29 types of instructions, shown in Table 1, each with 10 differ-
ent input texts. We utilize five audio prompts and speaker embeddings from five speakers (three
female and two male) as conditions for the flow matching model. Our testing is conducted in of-
fline mode. We objectively evaluate content consistency (CER), speaker similarity (SS), and speech
quality (NMOS). Subjectively, we assess the accuracy and naturalness of instruction using the Mean
Opinion Score for Instruction (MOS-I), which ranges from 1 to 5. Each sample is assessed by 10
native Chinese speakers, with scores assigned in increments of 0.5. The evaluation criteria focus on
whether the speech adheres to all specified instructions, such as emotional expression, speech rate
adjustment, dialect usage, and role-playing. Fine-grained controls, including the insertion of laugh-
ter, speaking with laughter, breath control, and emphasis, are evaluated for naturalness and accuracy.
As illustrated in Table 10, CosyVoice 2 exhibits superior content consistency (CER), speaker similar-
ity (SS), and accuracy and naturalness in instruction control (MOS-I), while maintaining comparable
speech quality to CosyVoice-Instruct. When input instructions are removed from CosyVoice 2, there
is a notable decline in MOS-I; however, improvements are observed in content consistency (CER),
speaker similarity (SS), and speech quality (NMOS). This indicates that instruction controllability
is difficult to implicitly emerge from content text.

Model CER (%) SS NMOS MOS-I
CosyVoice-Instruct [34] 1.72 0.797 3.94 3.14
CosyVoice 2 1.52 0.804 3.94 4.11
CosyVoice 2 w/o Instruction 0.97 0.817 4.02 2.54

Table 10: Evaluation results for content consistency (CER), speaker similarity (SS), speech quality
(NMOS), and MOS-I (Instruction, assessing the accuracy and naturalness of instruction) on an in-
house Chinese test set for CosyVoice-Instruct, CosyVoice 2, and CosyVoice 2 without instruction
input. The Paraformer model is used as the ASR system, with punctuation marks excluded from the
CER calculation. Dialect data is not included in the CER calculation because the Paraformer model
cannot recognize Chinese dialect speech.
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4.6 Results on Speaker Fine-tuned Models

During the fine-tuning phase, we employ unsupervised clustering on the speaker embeddings of the
same speaker to ensure the stability of the speaker’s timbre. We have demonstrated that a target
speaker with as few as 400 audio recordings can achieve reasonably good speech synthesis perfor-
mance, with only slight variations in objective metrics observed among different speakers, as shown
in Figure 6. Our experiments indicate that most speakers can inherit the zero-shot TTS model’s
robust contextual understanding and perception, thereby naturally expressing various moods and
emotions in response to the input text.
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Figure 6: Results of CosyVoice 2 SFT Models under the SEED evaluation settings. CER is used for
test-zh and test-hard, while WER is used for test-en.

4.7 LM Fine-tuning with Reinforcement Learning

Although the SFT can improve the performance on most speakers, the results of Spk E are still worse
than the base model especially on English. Because it has a more complex voice and faster speech
speed. Additionally, only Chinese recordings are available for Spk E. So we choose the Spk E to
evaluate the effectiveness of reinforcement learning. During the SFT of text-speech LM, we apply
the DPO to change the preference biasing of the LM by the ASR and SS rewards (DPO-ASR-SS).
We also use the differentiable ASR rewards to optimize the LM parameters. After SFT, we evaluate
the model with content consistency (WER), speaker similarity (SS) and speech quality (NMOS) on
the test set of Spk E and further evaluated the WER on the SeedTTS test sets to explore whether the
model can maintain robustness to out-of-domain or cross-lingual input text. Results are shown in
Table 11.

Model Inhome Target Speaker SEED tests(%)
WER(%) NMOS SS zh en hard

Ground Truth 6.00 3.87 0.697 1.26 2.14 -
CosyVoice 2 5.34 3.91 0.721 1.45 2.57 6.83

CosyVoice 2-SFT 7.15 3.96 0.795 1.50 4.26 7.90
+ LASR 6.79 3.96 0.795 1.29 3.53 7.30
+ LDPO 6.83 3.96 0.792 1.43 4.02 8.31
+ LASR + LDPO 6.64 3.97 0.796 1.25 3.17 6.66

Table 11: Content consistency (WER), speaker similarity (SS) and speech quality (NMOS) compar-
ison for reinforcement learning models on Spk E.

Compared to the pre-trained base model, the SFT model shows higher speaker similarity and speech
quality, however, the WER could be worse than the base model. We find that the audio synthe-
sized by the base model always has a slower speed than the SFT and ground truth, which is more
friendly to the ASR systems. For the target speaker dataset, both preference biasing and differen-
tiable rewards can reduce the WER with little harmful effect on the other two metrics. But for the
SEED test sets, the DPO based reinforcement only benefits the Chinese and English subset, while
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the hard samples will be worse. The reason could be that the hard samples contain many repeated
words or phrases, they could be regarded as rejected samples during DPO training. However, the
differentiable ASR reward will not suffer this problem, as it can directly optimize the TTS system
by the ASR posterior. This means that the differentiable ASR reward has a better generalization
ability in the out-of-domain situations. Finally, we can combine them with each other for further
improvements.

5 Conclusion

Building on the success of CosyVoice, this report presents CosyVoice 2, an improved streaming
speech synthesis model that leverages large language models. By unifying streaming and non-
streaming synthesis within a single framework, CosyVoice 2 achieves human-parity naturalness,
minimal response latency, and virtually lossless synthesis quality in streaming mode. Key inno-
vations include finite scalar quantization for full codebook utilization, a simplified text-to-speech
language model architecture that incorporates pre-trained textual LLMs, and the development of
a chunk-aware causal flow matching model to support diverse synthesis scenarios. Additionally,
improvements in instructed TTS capacity allow for versatile and vivid speech generation with fine-
grained control over emotion, accent, role style, and vocal bursts. Through systematic modifications
and optimizations, CosyVoice 2 not only delivers superior synthesis quality but also loosens de-
ployment requirements, making it suitable for both streaming and non-streaming applications. We
believe that CosyVoice 2 represents a significant advancement in scalable, high-quality, and interac-
tive text-to-speech synthesis.

6 Limitations

CosyVoice 2 has several limitations that need to be addressed. First, it supports only a limited
number of languages. For languages with overlapping character sets, synthesis performance may
degrade, presenting an open challenge for future research. Second, CosyVoice 2 cannot control
acoustic characteristics, such as timbre, through textual instructions, which could be a fascinating
area of exploration for role-playing applications. Additionally, CosyVoice does not perform well
when tasked with singing.
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